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Summary

Disordered mitochondrial metabolism may play an im-
portant role in a number of idiopathic neurodegenerative
disorders. The question of mitochondrial dysfunction is
particularly attractive in the case of idiopathic Parkinson
disease (PD), since Vyas et al. recognized in the 1980s
that the parkinsonism-inducing compound N-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine is a mitochondrial
toxin. The unique genetic properties of mitochondria
also make them worthy of consideration for a patho-
genic role in PD, as well as in other late-onset, sporadic
neurodegenerative disorders. Although affected persons
occasionally do provide family histories that suggest
Mendelian inheritance, the vast majority of the time
these diseases appear sporadically. Because of unique
features such as heteroplasmy, replicative segregation,
and threshold effects, mitochondrial inheritance can al-
low for the apparent sporadic nature of these diseases.

Mitochondrial Electron-Transport–Chain Dysfunction
in Parkinson Disease (PD)

Several investigators have described loss of electron-
transport–chain activity in multiple tissues from indi-
viduals with PD. This biochemical defect has been seen
in platelets (Parker et al. 1989a; Krige et al. 1992; Be-
necke et al. 1993; Haas et al. 1995), lymphocytes (Yosh-
ino et al. 1992), brain (Schapira et al. 1989), muscle
(Shoffner et al. 1991), and fibroblasts (Mytilineou et al.
1994). Immunoblot studies of brain tissues from indi-
viduals affected with PD have demonstrated disruption
of NADH:ubiquinone oxidoreductase (complex I) su-
bunits (Mizuno et al. 1989). Thus, PD is a systemic
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illness, but only certain cells, a group of neurons in the
substantia nigra, are selectively vulnerable to its effects.
The identification of this lesion in nontarget tissues, such
as platelets, further suggests that it does not simply result
from cell death consequent to PD. Also, although the
magnitude of the complex I defect in PD is unclear (range
16%–71%, in published studies), even small perturba-
tions of the electron-transport chain may carry patho-
genic significance, since the effects of bioenergetic pro-
cesses on cellular metabolism are protean.

Leber hereditary optic neuropathy (LHON) is a neu-
rodegenerative disease with some parallels to PD. Var-
ious epidemiological, biochemical, and clinical similar-
ities between these two diseases help validate the likely
functional significance of the PD complex I defect.
LHON, which may occur sporadically or in a matrilineal
pattern typical of mitochondrial inheritance, results
from point mutations in mitochondrial genes encoding
complex I. The genetic defect in LHON and the resulting
biochemical lesion are anatomically widespread, yet pa-
thology is usually confined to the optic nerve and retina.
Complex I catalytic dysfunction is demonstrable in
LHON platelets and is comparable in magnitude to that
seen in PD platelets (Parker et al. 1989b).

Studies of parkinsonism-inducing toxins, particularly
N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),
are also relevant to the complex I defect in PD (Vyas et
al. 1986). This compound is oxidized, by monoamine
oxidase, to a lipophilic species, 1-methyl-4-phenyl pyr-
idinium (MPP�), a complex I inhibitor that is concen-
trated in mitochondria. It is unclear whether the ana-
tomic specificity seen in MPTP toxicity reflects specific
concentration within nigral neurons with dopamine-up-
take sites (Javitch et al. 1985) or whether this specificity
reflects an intrinsic vulnerability of nigral neurons to this
type of complex I inhibition.

Neuroleptic medications used to treat psychiatric and
other disorders represent another class of agent that can
induce parkinsonism in humans. Burkhardt et al. (1993)
studied the effects of representative compounds from
several classes of neuroleptic drugs and found that they
tend to be very potent inhibitors of rat-brain complex I
activity. Interestingly, the propensity of these agents to
cause extrapyramidal symptoms generally correlates
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Figure 1 Cybrid technique. Immortalized cells are depleted of
their endogenous mtDNA, via long-term ethidium bromide exposure,
to form r0 cells. In one variation of the technique, platelets (which
have mitochondria and mtDNA but no nucleus or nuclear DNA) are
fused with r0 cells to form cytoplasmic hybrids (“cybrids”). This strat-
egy allows for control of nuclear genetic and environmental input,
which is the same in the cybrid lines thus generated. After many cycles
of cell and mitochondrial replication, cybrid lines are assayed for phe-
notypic differences. Phenotypic differences between cell lines suggest
that their mtDNA is not identical.

with their potency as complex I inhibitors. Studies of
platelet complex I activity in patients taking clinically
relevant doses of these agents demonstrated a loss of
complex I activity comparable to that seen in PD platelet
mitochondria. These factors provide a direct link be-
tween complex I dysfunction and PD.

Origin of Complex I Dysfunction in PD

Demonstrations of a loss of complex I activity in PD
beg the question of etiology. Many attempts have been
made to link PD to environmental factors, because of
PD’s generally non-Mendelian pattern of occurrence.
The discovery of MPTP, an environmental agent capable
of causing a PD-like syndrome, gave credence to the
concept that environmental factors could represent a
common etiologic cause for this disease. In a few in-
stances—PD in manganese miners, for example—the ill-
ness can clearly be linked to an environmental toxin.
However, identification of a specific environmental agent
responsible for the majority of PD cases remains elusive.
The demonstration of persistent complex I deficiency in
many PD patients further suggests that, if an environ-
mental toxin does indeed act to produce complex I dys-
function, either it is extraordinarily long-lasting or ex-
posure is ongoing. The demonstration of a
mitochondrial oxidative defect in cells replicating in cul-
ture also argues against a toxic etiology, since, in a rap-
idly expanding population of cultured cells, a toxin

should be tremendously diluted and its effects lost (My-
tilineou et al. 1994).

A genetic basis for the complex I–activity deficiency
in PD is consistent both with the tissue-culture data and
with the electron-transport phenotype in multiple tis-
sues. Complex I contains 150 subunits and multiple
prosthetic groups. The majority are encoded by nuclear
genes, but typical Mendelian inheritance patterns are
rarely observed, and there is a high degree of discordance
among MZ twins (Ward et al. 1983; Marsden 1987;
Marttila et al. 1988a; Tanner et al. 1997). Clinical ex-
perience therefore is inconsistent with causative muta-
tions in any of the nuclear complex I genes. Seven of the
subunits of complex I, however, are encoded by the mi-
tochondrial genome. A complex I lesion resulting from
mutation(s) in these genes might produce a more spo-
radic occurrence pattern, as is typical for this disease.

A direct approach to the question of mitochondrial
gene involvement in the pathogenesis of PD was made
through mitochondrial gene-transfer experiments. In
these experiments, a culturable human cell line (SH-
SY5Y neuroblastoma) was depleted of mtDNA by pro-
longed culture in the presence of ethidium bromide,
which intercalates into mtDNA and interferes with
mtDNA replication. After 3–4 mo, cells lose their
mtDNA, and this is associated with loss of respiratory
competence. The resulting cells, termed “r0,” become
dependent on pyruvate and uridine for survival. mtDNA
can be reintroduced via polyethylene glycol–mediated
fusion of r0 cells with either control or PD platelets that
contain mtDNA, but no nuclear DNA, and that express
the PD complex I defect (Parker et al. 1989a). The re-
sulting cytoplasmic hybrid (“cybrid”) thus contains
mtDNA derived from either a control or a PD subject.
Transformed cybrid cells propagate even when deprived
of pyruvate and uridine. The effects of the exogenously
derived mtDNA contained within a cybrid line can then
be assessed via a variety of chemical and physical tech-
niques (Miller et al. 1996). A schematic depicting cybrid
methodology is shown in figure 1.

We used this strategy to investigate the origin of the
PD-associated complex I defect. We compared PD cy-
brids to age-matched control cybrids and found a highly
significant loss of complex I activity (Swerdlow et al.
1996). In these experiments, the decrement in complex
I activity observed in PD cybrids relative to control cy-
brids was smaller than that seen in direct studies of PD-
patient tissues. This probably reflects a tendency for cells
that carry a lesser burden of defective mtDNA to grow
faster and, thus, to be overrepresented in the culture;
cybrid studies may therefore underestimate the magni-
tude of the defect in vivo. Alternatively, this finding could
indicate that the complex I defect of PD arises from
multiple origins that may include nuclear and/or envi-
ronmental contributions. Similar studies were carried
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out with cybrids for Alzheimer disease (AD), another
sporadic neurodegenerative disorder, in which a different
electron-transport–chain complex, cytochrome c
oxidase (complex IV), is defective (Parker et al. 1990;
Kish et al. 1992). These studies showed a loss of complex
IV activity, as occurs in vivo in AD. They also confirm
that the findings in PD cybrids are relatively specific and
are not simply representative of a general neurodege-
nerative disease–associated phenomenon (Swerdlow et
al. 1997a). We also found that PD cybrids were sensi-
tized to the MPTP-derived toxic metabolite MPP� in that
they demonstrated (relative to control cybrids) an in-
creased tendency to undergo apoptotic cell death in the
presence of low concentrations of the toxin. This finding
again illustrates the functional relevance of the trans-
ferred, mtDNA-derived complex I lesion, and it illus-
trates how a genetic abnormality might interact syner-
gistically with some agent in the environment to cause
the disease phenotype.

Pathogenicity of Complex I Dysfunction in PD

Further studies of PD cybrids indicate that the
mtDNA-transferable complex I lesion is sufficient to pro-
duce pathogenic changes at the cellular level. Multiple
studies of PD tissues suggest that oxidative stress is pres-
ent in this disease, but the origin of this finding is not
clear (Beal 1995). Bioenergetic dysfunction could rep-
resent a source for reactive oxygen–species (ROS) gen-
eration; indeed, mitochondria are believed to constitute
a major site of ROS production (Beal 1995). Excess pro-
duction of ROS in PD cybrids is readily demonstrable
when they are studied in the presence of the fluorescent
ROS probe, dichlorofluorescein diacetate, which is
trapped in cells after cleavage of ester moieties. The re-
sulting dichlorofluorescein emits a characteristic fluo-
rescence when attacked by ROS. The mtDNA-derived
complex I defect may thus be the source of oxidative
stress in PD. In further support of this possibility, Cas-
sarino et al. (1997) found that several ROS-metabolizing
enzymes are upregulated in PD cybrids, as they are in
PD brain tissue (Marttila et al. 1988b; Saggu et al. 1989;
Kalra et al. 1992; Damier et al. 1993).

Sheehan et al. (1997b) investigated calcium metabo-
lism in PD cybrids and found that, after carbachol-in-
duced generation of calcium transients, recovery of cy-
tosolic calcium was prolonged in PD cybrids compared
with control cybrids. Failure of calcium buffering after
receptor-mediated stimulation has clear implications for
in vivo excitotoxicity where elevated calcium levels are
cytotoxic. This set of experiments also demonstrated
that, although basal cytosolic calcium concentrations in
PD and in control cybrids were similar, calcium release
into the cytosolic compartment was decreased in PD
cybrids after mitochondrial uncoupling, consistent with
a loss of mitochondrial calcium sequestration in PD cy-

brids. These findings can be contrasted with similar stud-
ies in AD cybrids, which, again, indicates the relative
specificity of the findings (Sheehan et al. 1997a).

Work from Schapira’s laboratory, using an unrelated
r0 system, has recently confirmed the presence of a com-
plex I lesion in PD cybrids (Gu et al. 1997). As a whole,
these studies indicate that there is a functionally relevant
abnormality in PD mtDNA. The phenotype of PD cy-
brids is also consistent with steadily mounting evidence
that defective mitochondria are capable of initiating
apoptosis (Kroemer et al. 1997). mtDNA-derived bioe-
nergetic dysfunction may represent a relevant link in the
pathogenesis of PD and other neurodegenerative dis-
orders, including AD, that manifest mitochondrial
dysfunction.

Support for Inheritable mtDNA Mutation in PD

A pathogenic role for mtDNA in PD raises the pos-
sibility that, in some families, PD may be transmitted in
a typical matrilineal pattern such as that seen with
LHON. Indeed, many kindreds with multiple PD-af-
fected members and only maternal inheritance are de-
scribed in the literature. Rarely, such kindreds are offered
as evidence of mitochondrial inheritance (Wooten et al.
1997a), although it is often felt that such kindreds in-
dicate autosomal dominance (Young et al. 1977; Mor-
rison et al. 1996; Lazzarini et al. 1994). Unless a PD
kindred is large enough to lend itself to Bayesian anal-
ysis, however, it is difficult to discern autosomal domi-
nance from maternal inheritance when intergenerational
transmission is solely matrilineal. Current evidence sug-
gests that PD may arise from either Mendelian (Poly-
meropoulos et al. 1997) or mitochondrial genetic (Swer-
dlow et al. 1996; Gu et al. 1997) mechanisms. Only a
few PD kindreds are extensive enough to suggest one or
the other mode of inheritance. Most cases present spo-
radically, and no clear family history is discernible.

We suggest that mtDNA mutations are responsible for
many of these sporadic cases of PD. We recently used
cybrids to study the possibility of heritable mtDNA mu-
tation in a multigenerational PD kindred in which in-
tergenerational transmission of PD is exclusively mater-
nal (Wooten et al. 1997a). Cybrids were made with
mtDNA from 15 family members (Swerdlow et al.
1997b). Complex I activity was lower, and free-radical
production was higher, in cybrids that contained
mtDNA from persons descended through maternal (vs.
paternal) lines. Low complex I activity and increased
oxidative stress were apparent, even in young maternal
descendants who were currently asymptomatic (but pre-
sumably at risk) for PD. These data suggest that heritable
mtDNA mutation could contribute to PD in this family
and that mitochondrial abnormalities are detectable well
in advance of onset of symptoms.

Recent epidemiological data also support a role for
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inherited mtDNA mutation in PD (Wooten et al. 1997b).
One large, prospectively constructed PD patient data-
base revealed that 32 of 265 PD probands had an af-
fected parent. Although more mothers than fathers were
affected, no statistically significant parental-gender pre-
dominance was demonstrated. However, of the 32 PD
probands with an affected parent, 5 also had an affected
sibling, and in each of these pedigrees, the affected par-
ent was the mother; this finding provides statistically
significant support for maternal inheritance. This resem-
bles the pattern seen in studies of sporadic AD, per-
formed with a similar strategy (Edland et al. 1996).

Attempts to examine PD mtDNA for the presence of
specific disease-related sequence changes have been in-
conclusive. Initial screening for mtDNA deletions was
mostly unrevealing, but RFLP analyses disclosed several
mtDNA mutations that occurred more frequently in PD
subjects than in unaffected controls (Shoffner et al. 1993;
Kosel et al. 1996). In one study using RFLP techniques,
screens for just two mtDNA mutations revealed that
∼25% of PD patients carried mutated mtDNA (Kosel
et al. 1996). In one PD mtDNA sequencing study, mu-
tations were found in all ( ) subjects analyzed (Ikeben � 5
et al. 1995). Issues of heteroplasmy enormously com-
plicate studies of mtDNA, however, and a definitive
study of mtDNA in PD has yet to be performed.

Conclusions

The original neuropathological descriptions of PD em-
phasized the presence of eosinophilic cytoplasmic inclu-
sions, called “Lewy bodies,” in the pars compacta of the
substantia nigra. Now, almost 2 centuries after the initial
clinical description of this disease entity, by James Par-
kinson in 1817, we are still attempting to define their
origin. Recent evidence now suggests that Lewy bodies
may in fact represent degenerating mitochondria (Gai et
al. 1997). Whether inherited or acquired, primary or
secondary, mitochondrial dysfunction is likely to be
found to be of great pathogenic significance in this
disease.
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